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APPLICATION OF IMPULSIVE DETERMINISTIC
SIMULATION OF BIOCHEMICAL NETWORKS VIA
SIMULATION TOOLS

GOKQE TUNCER AND VILDA PURUTGUOGLU

ABSTRACT. In order to understand the possible behaviour of biochemi-
cal networks, deterministic and stochastic simulation methods have been
developed. However in some cases, these methods should be broaden.
For example, if the biochemical system is subjected to the unexpected
effects causing abrupt changes in the network, the ordinary simulation
algorithms cannot capture these impulsive expressions.

In this study, we select the simulations tools, specifically, COPASI
and Systems Biology Toolbox for MATLAB among alternatives that en-
able us to represent the impulsive changes in the system via impulsive
or adaptive deterministic simulation algorithms. Accordingly, we com-
pare these tools by applying the two major impulsive scenarios, namely,
impulses for fixed times and fixed states, based on their accuracies and
computational demands. We evaluate our results for small and large
systems, respectively.

2010 MATHEMATICS SUBJECT CLASSIFICATION. 00A72, 65C20, 68U20,
34A37.

KEYWORDS AND PHRASES. Simulation of biochemical networks with
impulses, comparison of computational tools.

1. INTRODUCTION

There are mainly two approaches of simulation to describe the activation
of biochemical systems in vitro. These are the deterministic and stochastic
simulation algorithms. These methods are based on different mathematical
backgrounds and take into account distinct dynamics. For instance, the
deterministic approach considers the network as a set of ordinary differential
equations in which every equation accounts for the rate of changes in the
concentrations of species in the system. On the other hand, the stochastic
approach suggests a random error term coming from the Brownian motion
in the description of the system’s activity and it is based on the chemical
master equations dependent on the change in molecular numbers of species
of the network [21]. But these algorithms have not been analyzed yet under
impulses.

The impulsive expressions account for the possible abrupt changes in the
biochemical systems [2]. This can be done under different scenarios. For
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instance, we can define a jump function which increases or decreases the
state vector at fixed time intervals, fixed states or autonomously.

In this study, we include impulses in the deterministic simulation of bio-
chemical networks by using the most popular simulation tools. Because in
the literature, the simulation tools are widely applied to generate (mainly de-
terministically) and estimate the model parameters of distinct dimensional
systems and to visualize them by various graphical interfaces. But their
performances under impulses have not been yet assessed both in terms of
computational time and accuracy of the estimates. Hereby, in this work,
we initially describe our impulsive functions that are applied in small and
realistically large networks. Then, we evaluate the capacity of the selected
tools for such calculations. And finally, we present comparative analyses
under two main impulses’ scenarios. Accordingly in the following section,
we briefly describe the simulation tools which we choose in these analyses
and describe their algorithms that are suitable for impulsive deterministic
simulations. In this section, we also introduce our impulse scenarios. In the
application part, we present the selected networks, namely, Lotka-Volterra,
PKC, L-L, MAPK-ERK and JAK-STAT pathways and state their impor-
tance in biological senses. Here, we further report our findings after the
analyses. Finally, in Conclusion part, we summarize the outputs and dis-
cuss future works.

2. SIMULATION TOOLS AND IMPULSES

In the simulation of the biochemical networks, a number of tools have
been developed. Among many alternatives, Cellware [5], COPASI [6], Dizzy
[12], Dynetica [20], E-CELL [18], GENESIS [4], Jarnac combined with JDe-
signer [13, 14], System Biology Toolbox [17] and Virtual Cell [16] are the
most widely used tools and freely available for academic purposes. But none
of these tools has the highest capacity under the criteria such as the sim-
plicity of the usage, supports from platforms, variety of the algorithms in
simulation as well as inference and finally the compatibility of the Systems
Biology Markup Language (SBML). Hence the users need to choose the most
appropriate tool with respect to their aims. In this study, we select COPASI
and Systems Biology Toolbox for MATLAB (SBT) for the simulation. The
reason is that they both have the highest number of algorithms for differ-
ent purposes, are compatible with SBML and both offer documents such as
tutorials and manuals. Moreover, these tools can perform impulsive simula-
tions under distinct algorithms. Thereby in the selection of the appropriate
algorithms in both tools, we define the following three main criteria.

(1) The method can handle stiff or nonstiff systems: Specifically, when
the numerical methods for solving the differential equations are nu-
merically unstable and when the step-size is not extremely small,
then it is considered as a stiff case. Otherwise, the system is ac-
cepted as a non-stiff manner. We choose the algorithms having stiff
property.

(2) The method is implicit or explicit: The explicit methods are easy to
implement, whereas, do not guarantee the numerical stability. On
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the other hand, implicit methods are computationally expensive but
guarantee stability.

(3) The simulation method can be adaptive or non-adaptive: If the al-
gorithm dynamically varies the step-size during the simulation, it
is called as the adaptive method, otherwise, we describe it as non-
adaptive. For the impulsive calculation, we use the adaptive algo-
rithm.

In Table 1, we classify all the supported deterministic simulation algo-
rithms in COPASI and Systems Biology Toolbox according to our listed
criteria. From this clustering, we see that all algorithms for both tools are
adaptive. Hereby, in our analyses, we mainly choose the more appropriate
algorithms in the calculation with respect to other criteria. Thereby, in the
calculation, we use COPASI with LSODA since it is the only method which
can satisfy our condition. On the other hand, in the simulation via SBT,
we select the Odell3 method since it is explicit and adaptive. But this
method is nonstiff. As we also compare the performance of both COPASI
and SBT in terms of the computational demand, we give priority to the
explicit /implicit feature with respect to the stiff/nonstiff property.

TABLE 1. Deterministic simulation methods available within
COPASI and SBT.

Program Method Name Algorithm Stiff/Nonstiff Tmplicit /Explicit
COPASI LSODA Adams&BDF Nonstiff and Stiff Tmplicit
SBT Odeds Runge-Kutta, Dormand-Prince(4,5) pair Nonstiff Explicit
SBT Ode23 Runge-Kutta(2,3) pair of Bogacki&Shampine Nonstiff Explicit
SBT Odell3 Adams-Bashforth-Moulton Nonstiff Explicit
SBT Odelbs NDF's (BDFs) Stiff Implicit
SBT Ode23s Rosenbrock Stiff Implicit
SBT Ode23t Trapezoidal rule Moderately Stiff Implicit
SBT Ode23tb TR-BDF2 Stiff Implicit

Accordingly, in the comparative analyses of COPASI and SBT, we con-
sider the following impulses scenarios with the given impulsive functions.

1. Systems with impulses at fized moments

(2) Ay = I(y), t=t
where y = (y1,...,yq) is the state vector as the function of time

t with each component referring to a species j. Thereby, j takes
value from 1 to d for totally d types of species. Likewise f(t,y) de-
notes the change in the concentration with respect to the time ¢. In
Equation 1, we use the notation of the difference, rather than the
differential equation where the chemical master equations are based
on [19], since the toolboxes work in discrete time. When the time is
equal to tj, then the impulse function Ix(y) increases or decreases
the concentrations of species at fixed moments.

1. Systems with impulses at variable moments
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3) Ay = f(ty), t# )
(4) Ay = I(y), t=mk(y)
where y = (y1,...,yq) stands for the state vector whose components

show the species j. Hence similar to the previous scenarios, j has a
range from 1 to d. d is the total number of species in the system.
Likewise the expression in Equation 3 implies the differences in con-
centrations with respect to the time ¢. When the time equals to
Tk(y) which is a variable, then the impulse function, I (y), increases
or decreases the concentrations of species at variable moments.

3. APPLICATION

In the implementation and the comparison of COPASI and SBT with/
without impulses under the given scenarios based on their computational
time and accuracies, we select five systems from small to large dimensions
and under various conditions. As the small system, we choose the Lotka-
Volterra model which is typically used for comparative studies of simulations
for its simplicity. This system is defined by 2 species with 3 reactions. As the
moderate network, we take the PKC pathway composed of 14 species with
20 reactions. Finally as the large networks, we consider three pathways,
namely, L-L, MAPK-ERK and JAK-STAT pathways. The L-L pathway
is defined by 33 reactions with 35 species. The MAPK-ERK pathway is
presented by 66 reactions with 51 species and the JAK-STAT pathway is
described by 67 reactions with 37 species.

Below we firstly describe the biological background of each system shortly
and then, represent the initializing conditions for running their deterministic
simulations via COPASI and SBT.

3.1. Lotka-Volterra Model. The Lotka-Volterra, also known as the prey-
predator model, is one of the well-known population models involving a
prey and a predator which we consider as rabbit (P;) and fox (P) for our
case as an example. In this model, these two species are subjected to the
three events, specifically, rabbit reproduction, rabbit-fox interaction, i.e.,
the death of the rabbit due to the fox, and the death of the fox due to the
natural causes as shown in Table 2 [21].

Mathematically, this model can be expressed with two differential equa-
tions (Table 3) where each of them accounts for the rate of change in the
concentration of species. Moreover, in order to define the full dynamics of
the system, we need to know initial numbers of species together with the re-
action constants. In our case, we take 4 preys and 10 predators and simulate
the system for 100 days. Thereby, the inputs of the deterministic simulation
can be represented by the initial state at ¢ = 0 as y(0) = (4, 10). Here, the
time interval is ¢ € [0, 100] and the reaction constants for the first, second
and the third reactions are ky = 1, k2 = 0.1 and k3 = 0.1, respectively [2].

Finally, we simulate the Lotka-Volterra model by considering without
impulses as seen in Figure 1 and with impulses as shown in Figure 2. For
the impulsive effect, we add 5 preys to the systems when the number of
preys becomes greater than 4.
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TABLE 2. Reactions, reaction rates and reaction constants
of the Lotka-Volterra model for the species Py and Pa. |[.]
denotes the concentrations for the given species.

Reaction Rates

Reaction Constants

Reactions

R1 : P1 — 2P1 k?1[P1] k1 =1
Ry : P+ P, — 2P, kQ[Pl][PQ] ko = 0.1
Rs: P, — 0 k3[P2] ks =0.1

TABLE 3. Ordinary differential equations (ODEs) and initial
amounts of the species for the Lotka-Volterra model.

Ordinary Differential Equations (ODEs) Initial Amounts (in Numbers)

d[Pr]/dt = ki[P1] — ko[ P1][P] [P1](0) =4
d[Ps]/dt = ko[ P1][Ps] — k3[Ps] [1%](0) = 10
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FIGURE 1. Deterministic simulation of the Lotka Volterra
model by using (a) COPASI and (b) SBT.
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FIGURE 2. Deterministic simulation of the Lotka Volterra
model by using (a) COPASI and (b) SBT with impulses.

3.2. PKC Pathway. The Protein Kinase C (PKC) signal transduction
pathway is involved in major neural functions such as the synaptic long-
term potentiation (LTP) and the depression (LTD) [8]. More specifically,
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the pathway accounts for the activation of the inactive PKC (PKCi) and
ends up with the concentration of the active PKC (PKCa). The model is
retrieved from the database of Quantitative Cellular Signaling and it consid-
ers a generic mammalian with 14 species. In the PKC pathway, the concen-
tration of the active PKC can be obtained by summing the concentrations
of computational intermediates. For this system, we apply two impulsive
scenarios for the concentration of PKCi since it is the major substrate of
the pathway. In the first case, we decrease the concentration of PKCi by
0.2 when it becomes less then 0.9 while in the second case, we increase the
amount of PKCi by 0.005 in every 50-minute. In Figure 3, we present the
underlying differences of the PKCi simulation results via COPASI and SBT
with/without impulses.

On the other hand, in order to compare the accuracy of the tools, we
consider the changes in species under impulses based on their changes in the
directions (i.e., increasing or decreasing sides). In order to decide on which
direction can be biologically more plausible when the impulses are based
on an increasing effect of the species, we think the species having reactions
with the PKCi protein on the product sides. Since they can be more likely
accumulated in the environment or they can be more than needed in the
system, the direction of the activations for the associated species can be seen
at the upward side. On the other side, to evaluate the decreasing direction
in the level of species, we control the species located in the reactant sides
of the reactions which are related to PKCi. We consider that if they are
observed more often on the reactant sides in the quasi reaction list of the
system, their concentration levels can reduce at the end of the calculation.

Hence from the results, we observe that the directions of the species after
the firing of impulses are the same in both tools. Moreover, the activation
of PKC is affected in the same direction when the impulses are seen in
increasing and decreasing way. Therefore, we consider that both tools can
capture the directional information of impulses accurately.

Concentrations of PKCactive
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FIGURE 3. Comparison of the differences of the PKCi simu-
lation results via COPASI and SBT with/without impulses.
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Finally in order to detect whether these underlying results are valid for
different initial conditions, we restart the simulation under two more sce-
narios too. In the first plan, we initialize all the concentrations of the pro-
teins in the system with 100 units. Then, we set the hazard [21] of each
reaction h; (j = 1,...,d) to 100 and if the reaction is the first-order re-
action, the reaction constant is calculated as k; = hj(y; k)/100 = 1. If
the reaction is the second-order, then the reaction constant is taken as
kj = hj(y;k)/100> = 0.01. Similarly, if the reaction is the third-order,
the associated reaction constant is found as k; = h;(y; k)/1003 = 0.0001. In
the reaction list of the PKC pathway, there are 14 first-order reactions and 6
second-order reactions whose reaction rates are set to k; = 1 and k; = 0.01,
respectively. Hence in order to assess the effect of impulses in decreasing
or increasing directions, after simulating the system without impulses, we
run it by adding 50 units of concentrations to PKCi in every 25-second and
then repeat the simulation by decreasing 50 units of concentrations from it
in every 25-second. The outcomes under the new conditions are listed in
Table 5 and the associated computational time is given in Table 4 for the
comparison. From the findings we observe that similar to the previous con-
dition, both tools are successful in detecting the direction of impulses and
produce accurate results.

3.3. L-L Pathway. The lysis-lysogeny (L-L) pathway is a crucial regulatory
mechanism which separates the population of the Escherichia coli (E.coli)
cell between lytic and lysogenic outcomes [3]. In this pathway, the proteins
CII, CIIT and N are the key proteins to find the number of lysogens pro-
duced in an infected cell population. The description of this system includes
the genetic mechanisms, which consist of the operator/promoter bindings,
transcription initiation, transcription initiation of translation, translation
and the initiation of mRNA degradation, coupled protein dimerization and
degradation reactions. Hereby, the associated reaction list is defined by 33
reactions with 35 species. In the simulation of this system with impulses, we
add 10 units of concentration to two core proteins, CII and CIII, in every
100-second due their importance in the regularization of the cell. Then, we
repeat the simulation by decreasing 10 units of concentration from the same
proteins in every 100-second. Finally, we check the similarity of the results
between COPASI and SBT. From the analyses based on the increasing ef-
fect, we find 2 species showing the opposite direction and 9 species having
the same direction, resulting in, 24 invariant genes. On the other side if we
evaluate the results of the decreasing effect, then, we detect only 1 and 10
species having the opposite and the same direction, respectively, with the
same 24 invariant genes. Hence, we see that both tools indicate very similar
outputs under impulses and the cause of the opposite directional species
cannot be explained via our validation criteria.

On the other hand in order to assess the findings under different condi-
tions, we equate the initial number of molecules of each species to 100 and
assign the reaction rates of the first (totally 23 reactions) and the second
order (totally 10 reactions) reactions as k; = 1 and k; = 0.01, respectively,
similar to other selected pathways. Here, we aim to investigate the influence
of the initialization on the findings of impulses. Under this second condition
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of the system, we control the effects of impulse when we increase the amount
of concentrations by 50 units in CII and CIII proteins at every 100-second
and decrease them 50 units for the same proteins at every 100-second. As
seen in Table 5, we observe that when the effect of impulses is in the in-
creasing direction, 7 species show the same direction of changes, 14 species
have opposite directions and 15 species do not indicate any change. On
the other side, when the effect of impulses is in the decreasing direction, 5
and 16 species have the same and opposite directions, respectively, and the
remaining the same 15 species are invariant from the impulses. Under this
condition and among the species showing opposite directions, 2 species can
be biologically validated by the outputs of SBT. Lastly, we still detect that
both COPASI and SBT are almost invariant to the direction of the impulse
although they can capture the absolute changes in the amount of concen-
trations for each species and the calculated differences are observed at the
incremental level. Finally in Table 4, we present the computational time of
both tools to compare their efficiencies in the calculations. In Figure 4, we
plot the underlying differences in the simulation results of the L-L pathway
via both tools with/without impulses.

L-L Pathway
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FIGURE 4. Comparison of the differences in simulation re-
sults of the L-L pathway via COPASI and SBT with /without
impulses.

3.4. MAPK-ERK Pathway. The MAPK (mitogen-activated protein ki-
nase), also known as ERK (extracellular signal-regulated kinase), pathway is
a popular signaling pathway which governs the cellular growth of all eukary-
otes from the cell reproduction to the death [11]. Moreover, this pathway
has a crucial role in various diseases such as the cancer, immunological, in-
flammatory and the degenerative syndromes [9]. Therefore, understanding
the dynamics of the pathway can be done via simulations and sheds light
on the drug developments. In our assessment, we add fixed-time impulses
and run the simulation again. Accordingly, we add 10 units of concentra-
tions to both RKIP and ERK.p2 species, which are the major two proteins
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controlling the inhibitory regulation of the system, in every 100-second. In
Figure 5, we plot both tools simultaneously without impulses. It is seen
that, there is almost no difference between tools under this condition. In
Figure 6, we draw RKIP and active ERK, denoted by the ERK.p2 species,
with/without impulses for illustration. From the plots, we observe that
COPASI and SBT indicate distinct equilibrium points for large systems and
under impulses. Furthermore, they show differences in their computational
time (Table 4). On the other hand, in order to compare their accuracies,
we consider the changes in species under impulses based on their changes
in the directions (i.e., increasing or decreasing sides). From the outputs, we
see that among 51 species used in the description of the system, 27 of them
indicate the same directions after the effects of impulses and 8 of them show
opposite directions. Finally, the remaining 16 species are not affected by
the impulses. These results are also listed in Table 5. In order to decide on
which direction can be biologically more plausible, we apply the same rules
as described previously, for only those 8 species. We see that the tools have
some minor differences. SBT looks for a solution which decreases the effect
of the impulse, whereas, COPASI searches for an optimal solution. But, as
we are interested in the long term behaviour in the deterministic simulation,
the effect of the impulses cannot be observable.

To detect whether the directions of impulses are effective, we repeat the
simulations under very sharp decreases. For the MAPK-ERK system, we
decrease RKIP by 20 units of concentrations when it hits 30 units and de-
crease ERK.p2 by 130 units when it hits 170 units. We observe that among
51 species, 33 of them indicate the same directions while almost the same 8
of them show the opposite directions and the remaining 10 species become
irrelevant from impulses. Hereby, these results show that both tools are al-
most insensitive to the direction of impulses and when the system has such
changes, they push to the system to the closest equality points and turn it
into a steady-state position.

Additionally to evaluate the system under different initial conditions, we
restart the simulation by setting the amount of concentrations for all sub-
strates to 100 units and initial hazards of all reactions that are used to
compute the reaction rates to 100. Then by calculating the reaction rates
inversely proportional to the amount of concentrations in each reaction, we
equate the reaction rates to k; = 1 for the first-order reactions, k; = 0.01
for the second-order reactions and k; = 0.0001 for the third-order reactions,
as similarly implemented for other pathways. In our reaction list, since 23
of the reactions are the first-order and the remaining 43 are the second-
order, the reaction rates are set to k; = 1 (for the first-order reaction) and
k;j = 0.01 (for the second-order reaction) for the MAPK-ERK system. In
order to assess the impulsive effects in decreasing or increasing directions,
after simulating the system without impulses, we run it initially by adding
50 units of concentrations to the RKIP and the ERK.P2 proteins in every
100-second and then repeat the simulation by decreasing the same amounts
from the same proteins. The outcomes under the new conditions are listed
in Table 5 and the associated computational time is represented in Table
4 for comparison. From the outputs in Table 5, we observe that under the
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increasing effects of impulses, most of the species, (i.e., 17 common species)
have opposite directions via COPASI and SBT. But according to our accu-
racy rules, we see that 6 of them can produce more biologically validated
results in COPASI and 5 of them can be biologically validated in SBT. On
the other side, when we evaluate the outcomes of the decreasing effect of
impulses, we find that 7 species in COPASI and 4 species in SBT can be
biologically confirmed among 20 species. On conclusion from this analysis,
we cannot explain the cause of opposite directions in both tools via our
evaluation rule.

MAPK/ERK Pathway
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FIGURE 5. Comparison of the differences in simulation re-
sults of the MAPK-ERK pathway via COPASI and SBT
with/without impulses.
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FIGURE 6. Comparison of the differences in simulation
results of RKIP and ERP.p2 via COPASI and SBT
with/without impulses.

3.5. JAK-STAT Pathway. The Janus kinase-signal transducer and acti-
vator of transcription (JAK-STAT) pathway transmits information coming
from extracellular polypeptide signals with transmembrane receptors, which
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causes the DNA transcription and the activity in the cell. The system is
mainly composed of a receptor, Janus kinase (JAK) and the Signal Trans-
ducer as well as Activator of Transcription (STAT) [1].

The selected model includes 64 reactions and 38 species. The complete
list of reactions, the species, their initial concentrations and their associated
reaction constants can be found in [7].

In Figure 7, we represent the comparative simulation of the JAK-STAT
pathway without impulses via COPASI and SBT. From Table 4, it is seen
that COPASI is computationally less demanding than SBT when the system
becomes more complex.

JAK/STAT Pathway
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FIGURE 7. Comparison of the differences in simulation re-
sults of the JAK-STAT pathway via COPASI and SBT
with/without impulses.

Finally in order to evaluate the effect of impulses in this pathway, we
add 10 units of concentrations to JAK, which is the main component of
the system, in every 100-second similar to the previous conditions. Then
as performed for the MAPK/ERK pathway, we check the changes in the
level of concentrations either in increasing or decreasing directions without
considering their magnitudes. From the outputs of COPASI and SBT, we
find that among 38 species, 4 of them indicate the same directional changes
while none of them shows opposite directions. Furthermore, the remaining
34 species do not show any change in both tools. On the other side, when
we decrease 20 units of concentrations from JAK while its concentration be-
comes less than 0.2 units, we observe that the same 4 species have the same
directions and none of them shows opposite sides in the change of concentra-
tions. Moreover, the remaining 34 species do not display any fluctuations in
COPASI, whereas, they represent changes in SBT. Finally in the assessment
of biologically plausible directions against impulses, we implement the same
criteria as stated beforehand and detect that the outputs of COPASI and
SBT can be validated biologically [7].

Lastly in order to assess these findings under different initials, we set all
amounts of concentrations of the species to 100 units and assign the reaction
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rates with respect to the order of reactions under constant initial hazards
for each reaction as performed other systems. Thereby, we have 45 first-
order reactions with k; = 1, 15 second-order reactions with £; = 0.01 and 1
third-order reaction with k; = 0.0001. In the JAK-STAT pathway, there are
3 reactions which show the external stimulus of the system. We set these
associated reaction rates to 1 as well since they are reversible reactions in
the system whose reversible reaction order is one. Then as performed for
the MAPK-ERK pathway, we extend the simulation results by adding 50
units of concentrations to JAK in every 100-second as the sharp impulse to
the system and by decreasing the same amount of concentrations from JAK
under the same condition to evaluate the effect of directions in impulses. The
findings of these new conditions are presented in Table 5 and the associated
computational time is listed in Table 4. Here, similar to previous pathways,
we investigate whether the cause of opposite directions in both tools can
be explained via our evaluation rule. From the outputs, we observe that
only 1 species found by SBT and 3 species detected by COPASI indicate
biologically relevant directions.

4. CONCLUSION

In this study, we have selected the simulations tools, specifically, COPASI
and System Biology Toolbox for MATLAB (SBT) among alternatives that
enable us to represent the impulsive changes in the system via impulsive
deterministic simulation algorithms. We have compared these tools by ap-
plying two major impulsive scenarios and various initial conditions based
on their accuracies and computational demands. We have observed that
COPASI is computationally less demanding that SBT, whereas, there is al-
most no difference in the accuracy of the tools if they are initialized with
biologically validated values. On the other hand when we changed the ini-
tial settings of the systems, in particular, for large systems, we have seen
differences between the simulation results of both tools. Hereby regarding
our assessment rule, we have found that COPASI can produce more bio-
logically relevant outputs. But the variation between the tools for large
networks and arbitrary initials can also imply that COPASI and SBT are,
indeed, more suitable for the regular deterministic simulations, i.e., without
impulsive effects, of the biological systems.

On the other hand, in our study, the applications of the impulses are
limited under two main scenarios. But they can be extended as the impulses
under random times, random states or predefined functions. Under these
conditions, the user may need to develop the codes of the impulsive functions
and insert them to the tools as a special package. Such implementations are
available in SBT. Furthermore, we think to extent this work by analyzing
the capacities of the tools in the representation of the bifurcation graphs.
Since these graphs enable the researchers to see stable and unstable species
in the system, this type of visualization can be also helpful for observing the
effect of impulses in the network.
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TABLE 4. Comparison of COPASI and SBT according to
their computation time (in second). For all pathways, the
biologically relevant initials are denoted by Condition 1 and
the initials based on the order of reactions are shown by
Condition 2.

Size of System Condition Network Model Program Time
Small 1 Lotka-Volterra COPAST 1
Lotka-Volterra SBT 1
Lotka-Volterra with Impulses COPASI 1
Lotka-Volterra with Impulses SBT 1
Moderate 1 PKC COPAST 1
PKC SBT 3
PKC with Impulses COPAST 1
PKC with Impulses SBT 3
Moderate 2 PKC COPAST 1
PKC SBT 3
PKC with Impulses COPASIT 1
PKC with Impulses SBT 3
Large 1 L-L COPAST 1
L-L SBT 4
L-L with Impulses COPASI 1
L-L with Impulses SBT 6
Large 2 L-L COPAST 1
L-L SBT 4
L-L with Impulses COPAST 1
L-L with Impulses SBT 6
Large 1 MAPK/ERK COPAST 1
MAPK-ERK SBT 24
MAPK-ERK with Impulses ~ COPASI 1
MAPK-ERK with Impulses ~ SBT 28
Large 2 MAPK/ERK COPASI 1
MAPK-ERK SBT 24
MAPK-ERK with Impulses ~ COPASI 1
MAPK-ERK with Impulses  SBT 28
Large 1 JAK-STAT COPAST 1
JAK-STAT SBT 244
JAK-STAT with Impulses COPASI 1
JAK-STAT with Impulses SBT 390
Large 2 JAK-STAT COPAST 1
JAK-STAT SBT 22

JAK-STAT with Impulses COPASI 1
JAK-STAT with Impulses SBT 28
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